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Abstract-A boundary-discontinuous double Fourier series method for obtaining analytical solu
tions to the problems of deformation of finite moderately thick cross-ply doubled-curved panels,
with four different boundary constraints, is presented in Part I of this investigation. In this segment,
the equations that arise by way of satisfying these boundary conditions, thereby ensuring well
posedness of the formulation and existence of the solutions thus obtained, are presented first. The
convergence characteristics of the series solutions, especially their dependence on laminations and
boundary constraints, are then numerically investigated in detail. Other numerical results presented
here include (i) verification/comparison with the available FSDT (first-order shear deformation
theory)- and CLT (classical lamination theory)-based analytical solutions, (ii) investigation of the
effects of length-to-thickness and radius-to-Iength ratios on the response of antisymmetric and
symmetric cross-ply doubly-curved panels, with various boundary constraints, and (iii) spatial
variation of displacements, rotations and moments.

I, INTRODUCTION

In the accompanying Part I of this study (Chaudhuri and Kabir, 1993), a methodology,
which exploits a recently published (Chaudhuri, 11989) novel double Fourier series approach,
to solve the boundary-value problem of deformation of moderately thick cross-ply doubly
curved panels of rectangular planform, subjected to transverse loads was presented. Sets of
5mn+2m+2n linear algebraic equations in terms of 5mn+8m+8n+4, 5mn+8m+8n+4,
5mn +6m +6n and 5mn +6m+6n unknown coefficients for the cases of SSl, SS2, SS4 and
C4 [following the classification of Hoff and Rehfield (1965)J boundary conditions, have
been obtained from the governing system of five highly coupled linear partial differential
equations (PDEs), that arise from using first-order shear deformation theory (FSDT) and
Sanders' kinematic relations. The details of the equations obtained from the boundary
conditions, which are presented in this part, are not discussed there in addition to the
relevant numerical results.

The convergence characteristics of displacements, rotations and moments, and their
dependence on lamination and boundary constraint are investigated in detail. In addition
to the study of the sensitivity of the response ofmoderately thick cross-ply spherical panels
to laminations and boundary constraints, numerical results presented include (i) comparison
with the available FSDT- and CLT-based analytical solutions, (ii) study of the effects of
(a) thickness and (b) curvature on displacements and moments, and (iii) spatial variation of
these response quantities. The equations, appendices and references of Part I of this paper
are referred to by their original numbers, years, etc., preceded by I, e.g. (16) denotes eqns
(6) of Part 1.

2, BOUNDARY CONDITIONS

SSI boundary condition
For this boundary condition, the governing system of PDEs (16)-(18) provide, in

total, 5mn+2m+2n equations in 5mn+8m+8n+4 unknowns. The remaining 6m+6n+4
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equations, necessary to match the number of unknowns, are obtained by way of satisfying
the prescribed boundary conditions. The geometric boundary conditions are automatically
satisfied by the assumed displacement functions (II I). With regard to the natural boundary
conditions, substitution of the appropriate derivatives [e.g. eqns (113)-(115) and (AI)] into
eqns (1I2a) and equating the coefficients ofsin (1tmXI), sin(pnx2)' etc., result in the following
linear algebraic equations:

0) N\(0,X2) = N 1(a,x2) = 0:

Bll(in±jn)+A\I(Cn±dn)-AI2Pn(en±J,,)= 0,

Oi) NixJ,O) = N 2(xJ,b) = 0:

B22(km±lm)-AI21tm(am±bm)+A22(gm±hm)= 0,

(I a)

(I b)

(iii) N 6(0, X2) = N6(a, X2) = 0:

(A 66 -CB66{~(PnUon +YnaO+t/!nbO) +m~\ (± l)m(PnUmn+Ynam +t/!nbm)]

+(A66+CB66{~en+ m~1 (±l)m(lXmVmn+Ymen+t/!mfn)]

+B66[Pn X on+m~\ (± I)m(PnXmn +lXmYmn)] = 0, (Ic)

(A 66 -CB66{ ~ ao+ ~ m~\ (± l)mam]+(A66+CB66{~ eo+ ~ m~1 (± t)m(1tmVmO

+Ymeo+t/!mfo)]+B66 f (± l)mlXmymo = 0, (Id)
m=1

(iv) N 6(xl, 0) = N 6(Xl,b) = 0:

(A 66 -CB66{~ am+ JI (± tt(PnUmn +Ynam+t/!nbm)]

+ (A 66 +CB66)[~ (lXmVmO +Ymeo +t/!mfo) + f (± tt(lXmVmn +Ymen +t/!mJ,,)]
n=\

+B66[f (±tt(PnXmn+lXmYmn)+1tmYmo]=O, (te)
n= I

(v) M 1(0,X2) = M 1(a,x2) = 0:

Dll(in±jn)+B\I(Cn±dn)-BI2Pn(en±J,,)= 0,

(vi) M 2(x J,0) = M 2(xJ,b) = 0:

D22(km±lm)-BI2lXm(am±bm)+B22(gm±hm)= O.

(If)

(lg)

(Ih)
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In eqns (1), the" +" sign applies for the first of the two conditions, i.e. for the edges x I or
x 2 = 0, while the" -" sign represents the conditions at the edges Xl = a or x 2 = b.

SS2 boundary condition
With regard to the geometric boundary conditions [see eqns (110b)], whenever any of

the assumed functions, given by eqns (Ill), fails to automatically satisfy a prescribed
geometric boundary condition, the delinquent solution function is forced to satisfy it. In
this particular case, Ul = 0 at the edges, XI = O,a, and U2 = 0 at the edges X2 = 0, b yield
2m+2n additional equations, which can be written as follows:

00

L l/JmUmn = 0,
m=1

00

UOn + L 'YmUmn = 0, for n = 1,2, ... ,
m=l

00

VmO + L 'YnVmn = 0, for m = 1,2, ....
n=1

(2a)

(2b)

The remaining equations that arise from the natural boundary conditions (N6 and M I or
M 2 = 0), prescribed at the appropriate edges, are similar to their SSI counterparts and are
omitted in the interest of brevity of presentation.

SS4 boundary condition
In this case, the geometric boundary conditions, U I or U2 = 0 and the natural boundary

conditions, M I or M 2 = 0, applied at the appropriate edges, supply equations, similar to
their SS2 counterparts.

C4 boundary conditions
The geometric boundary conditions supply 4m+4n equations (from satisfying Uj = 0

at the edges x I = 0, a and U2 = 0 at the edges x 2 = 0, b), identical to eqns (2) for the SS2
case, while the conditions, cP I = 0 at the edges x I = 0, a, and cP2 = 0 at the edges x 2 = 0, b,
supply the following linear algebraic equations:

00

L l/JnYmn = 0,
n= 1

00

X On + L 'YmXmn, for n = 1,2, ... ,
m=1

00

YmO + L 'YnYmn, for m = 1,2, ....
n=l

(3a)

(3b)

3. SOLUTION TECHNIQUE OF SIMULTANEOUS EQUATIONS

In the interest ofcomputational efficiency, the 5mn+2m+2n linear algebraic equations
[e.g. eqns (117) for the case of SSI boundary condition], resulting from the governing
PDEs, are first solved for Umn, Vmn , Wmn , Xmn and Ymn in terms of constant coefficients an,
bn, etc., following the procedure laid down by Chaudhuri (11989). These are then substituted
in the linear algebraic equations generated from the boundary conditions [e.g. eqns (2) for
the case of SSI boundary condition]. This operation reduces the size of the problems
under consideration by one or more orders of magnitude, finally resulting in 6m +6n +4,
6m+6n+4, 4m+4n and 4m+4n linear algebraic equations for the SSI, SS2, SS4 and C4
boundary conditions, respectively.

4. RESULTS AND DISCUSSIONS

For illustrative purposes, numerical results for antisymmetric (0°/90°), and symmetric
(0°/90°/0°) cross-ply spherical panels of square planform, and subjected to uniformly

Table I. Comparison of FSDT- and CLT· computed normalized deflections of an
antisymmetric (0°/90°) cross-ply flat panel (material type 2)

CLT
Whitney (11970)

2.861

Transverse displacement, u!
FSDT FSDT

Kabir and Chaudhuri (1991) (Present, R = J08)

2.860 2.845
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Fig. 1. Convergence of (a) u!, tPf, and (b) Mf of a square moderately-thick (afh = 10) and
moderately-deep (Ria = 10) antisymmetric cross-ply (0°/90°) spherical panel, with SS4 boundary

condition.

distributed transverse loads, are presented. The following material properties are assumed:

(a) Material type I (Pagano and Hatfield, 1972)-used in Figs 1-15 and Tables 2, 3:
E1 = 175.78 GPa (25,000 Ksi),

EdE2 = 25, G12 /E2 = G13 /E2 = 0.5, G23 /E2 = 0.2, V 12 = 0.25.

6 •• U3 •

U34l~""""-"""';~"""------""-"- O~1

I2 ~

20 40 60 80 100
n=m

(a)

Upper bound
30

Lower bound

20 : C4 Boundary Condition
M:

0°/90°10 Lamination

a =b; alh =10; Ria =10
0.0

20 40 .60 80 100
n=m

(b)

Fig. 2. Convergence of (a) u!, tPT, and (b) MT of a square moderately-thick (alh = 10) and
moderately-deep (Ria = 10) antisymmetric cross-ply (0°/90°) spherical panel, with C4 boundary

condition.
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Fig. 3. Variation of the normalized central displacement, rotation (XI = 0, X 2 = a/2), and central
moment of square moderately-deep (Ria = 10) antisymmetric cross-ply (0°/90°) spherical panels

with SSI boundary condition, with alh ratio.

(b) Material type II (Whitney, I1970)-used in Table 1: E I = 281.2 GPa (40,000 Ksi),

EdEz = 40, Glz/Ez = G13IEz = 1.0, G z3 /Ez = 0.2, VIZ = 0.25,

in which E I and E z are the surface-parallel Young's moduli in XI and Xz coordinate
directions, respectively, while G IZ denotes surface-parallel shear modulus. G I3 and G 23 are
transverse shear moduli in the XI-X3 and XZ-X3 planes, respectively, while VIZ is major
Poisson's ratio on the XI-XZ surface. The shear correction factors, Kf = K~ = 5/6, are
assumed in the absence of better information [see, e.g., Bert and Chen (1978)]. This is
because of the difficulty encountered in measurement of the transverse shear moduli in a
lamina. Additionally, manufacturing defects, such as local fiber waviness regions and
associated resin-rich areas that can trigger kink band type shear failure, when subjected to
shear or compression loading [see Chaudhuri (1991) for details], playa significant role in

SS2 Boundary Condition

0°/90° Lamination

a =b; RIa =10

5040

2.0

1.0

f

-_..j

--'------;:-----_._----_.
......._-

o.o':-_~ -l

0.0 10 20 aIh 30

4.0

3.0

Fig. 4. Variation of the normalized central displacement, rotation (Xl = 0, X2 = aI2), and central
moment of square moderately-deep (Ria = 10) antisymmetric cross-ply (0°/90°) spherical panels

with SS2 boundary condition, with alh ratio.
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Fig. 5. Variation of the normalized central displacement, rotation (XI = 0/4, Xl = 0/2), and central
moment of square moderately·deep (R/a = 10) antisymmetric cross·ply (0°/90°) spherical panels

with C4 boundary condition, with a/h ratio.

the deformation behavior of real-life composite laminates. All the numerical results with
the single exception of comparison with CLT-based solution (Table I) due to Whitney
(11970), are computed using the material type 1. The following non-dimensionalized quan
tities are defined:

in which a represents the curved span length of a side of the spherical panel and is assumed
equal to 812.8 mm (32 in.), while h is its total thickness. q denotes the uniformly distributed

SSI Boundary Condition

0°/90° /0° Lamination

a = b; RIa = 10
5.0

~O r·--·---·-----.--_
• fill --'-

3.0

2.0 .------ •••••-- ••• __._•• .~!...

.
fiI, .. M( 30

O.OL-_........ ~'__~_--J

0.0 10 20 aIh 30 40 50

Fig. 6. Variation of the normalized central displacement, rotation (x I = 0, X 2 = aI2), and central
moment of square moderately·deep (Ria = 10) symmetric cross-ply (0°/90°/0°) spherical panels

with SSl boundary condition, with alh ratio.
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SS2 Boundary Condition
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Fig. 7. Variation of the normalized central displacement, rotation (XI = 0, X2 = a/2), and central
moment of square moderately-deep (R/a = 10) symmetric cross-ply (0°/90%°) spherical panels

with SS2 boundary condition, with a/h ratio and comparison with the CLT counterparts.

transverse load. For all the numerical results presented in Figs 1-11, the displacement, UJ,

and moment, M h are computed at the center of the panel, while the rotation, c/J h is
computed at the points (0, b/2) and (a/4, b/2) for the simply-supported, and clamped
boundary conditions, respectively.

Figure 1(a) displays the convergence (with m = n) of non-dimensionalized transverse
displacement, uT and rotation, c/JT, of moderately thick (a/h = 10) antisymmetric cross
ply (0°/90°) spherical panels, with the SS4-type simply-supported boundary condition,
prescribed at all four edges. Rapid and monotonic convergence is observed. The magnitudes
of uT and c/JT, computed using m =n = 27 are within 0.899% and 0.389%, respectively, of
the corresponding "converged" results (m = n = 78). Although the convergence plot of the
central moment, MT, presented in Fig. l(b) exhibits an initial lack of monotonicity for
m = n ~ 5, a rapid and monotonic convergence follows thereafter. For example, MT,
computed using m = n = 27, is within 0.202% of the corresponding "converged" result at

C4 Boundary Condition

.
U, JJ1 - M( 10

/ ... --._.- .........
/' .......i,.....·......

1 ....................

0°/90° /0° Lamination

a =b; Ria =102.0

3.0

4.0

1.0

5.0

... --------------------- ------------_.0.0 ..,
0.0 10 20 30 40 50

8111

Fig. 8. Variation of the normalized central displacement, rotation (x I = a/4, x 2 = a/2), and central
moment of square moderately-deep (R/a = 10) symmetric cross-ply (0°/90%°) spherical panels

with C4 boundary condition, with a/h ratio.



280 R. A. CHAUDHURI and H. R. H. KABIR

3.0'---~--'-----'---"'--"'"

2.0 M, 0°/90° l.amination
-._-------------_._--

1.0 -------------- ------ ----------- .. -
(a)

1008040 60
RIa

20

., . . .
U3 - u3 /8; ~,- .,15; JJ,• M,I300.0'---~~ ---''___........._----J

0.0

SSI Boundary Condition
a = b; alh = 10

3.0r---........--.-----.---..----,

2.0 ~ 0°/90° /0° Lamination
JJ,--_._._._--._.-._-_._._._._---_._--

1.0 ~_.__• • •• , • • • (b)

. .
U3 - u313 JJ, • M,J50

0.0 L-. "--_-'-__"'-_....J.

0.0 20 40 60 80 100
RIa

Fig. 9. Variation of the normalized central displacement, rotation (XI = 0, X2 = a/2), and central
moment of square moderately-thick (a/h = 10) (a) antisymmetric (0°/90°) and (b) symmetric

(0°/90%°) cross-ply spherical panels with SSI boundary condition, with R/a ratio.

m = n = 78. Convergence of ut, 4JT and MT of moderately thick symmetric cross-ply
(0°/90% °) panels of otherwise the same geometry and with the same boundary conditions
as above, tends to be faster compared to their antisymmetric (0°/90°) counterparts.
Additionally, u1 and MT vs m = n plots exhibit initial nonmonotonicity. Since the con-
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Fig. 10. Variation of the normalized central displacement, and rotation (XI = 0, X 2 = aI2), ofsquare
moderately-thick (alh = 10) (a) antisymmetric (0°/90°) and (b) symmetric (0°/90°/0°) cross-ply
spherical panels with SS2 boundary condition, with Ria ratio and comparison with the CLT

counterparts.
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Fig. II. Variation of the normalized central moment of square moderately-thick (a/h = 10) anti
symmetric (0°/90°) and symmetric (0°/90% °) cross-ply spherical panels with SS2 boundary

condition, with R/a ratio and comparison with the CLT counterparts.

vergence characteristics of both types of laminates are otherwise similar, these plots are not
presented here in the interest of brevity.

FSDT-based convergence plots of an antisymmetric cross-ply spherical panel, with the
SS2 boundary condition (not shown), are numerically too close to their SS4 counterparts
to warrant a separate plotting. This is because both the conditions prescribe Un = 0 (instead
of Nn = 0) at a boundary-a choice that appears to have a major influence on the response'
of antisymmetric cross-ply panels under uniform loads. Likewise, the convergence charac
teristics of the response quantities for antisymmetric cross-ply panels, with SSI and SS3
boundary conditions (not shown in the interest of brevity of presentation), where Nn = 0,
instead of Un = 0, is prescribed at a boundary, are numerically very close.

3.0

~

2.0 0°/90° Lamination
~,

..~ ..--..- .. . .._ .. <8>
1.0 ,-'--------- -- - ---- ---- - ----- - ----- ----

C4 Boundary Condition
a =b; alh =10

3.0r--~--~-~--~-...,
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2.0 -------------------'
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Fig. 12. Variation of the normalized central displacement, rotation (XI = a/4, X2 = a/2), and
central moment ofsquare moderately-thick (a/h = 10) (a) antisymmetric (0°/90°) and (b) symmetric

(0°/90% °) cross-ply spherical panels with C4 boundary condition, with R/a ratio.
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Fig. 13. Variation ofnormalized displacements, rotation and moment along the center line, x 2 = a/2,
of a square moderately-thick (a/h = 10) and moderately-deep (R/a = 10) antisymmetric cross-ply

(0°/90°) spherical panel with SSI boundary condition.

The convergence of u! of a moderately thick (a/h = 10) antisymmetric cross-ply
(0°/90°) panel, with the C4-type clamped boundary condition, shown in Fig. 2(a), is similar,
in nature, to its SS4 counterpart, while the corresponding uT, computed at the point (a/4, b/2)
and shown in Fig. 2(a), unlike its SS4 counterpart, oscillates noticeably for m = n ~ 21.
Oscillations for m = n > 21 can be regarded as negligible-for example, the difference in
results computed at m = n = 29 and 31 is only 0.148%. However, a bounded oscillation,
with upper and lower bounds shown by dashed lines in Fig. 2(b), is observed for the central
moment MT. For the case of 4JT and MT, the sum of the Fourier series tends to converge

SS2 Boundary Condition

0°/90° Lamination

a =b; alh =10; Ria =10

3.0

0.0

1.0

. .
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'.. : :1.0 xl/a

-1.0

-2.0

-3.0

Fig. 14. Variation ofnormalized displacements, rotation and moment along the center line, x 2 = a/2,
of a square moderately-thick (a/h = 10) and moderately-deep (R/a = 10) antisymmetric cross-ply

(0°/90°) spherical panel with SS2 boundary condition.
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C4 Boundary Condition
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Fig. 15. Variation of normalized displacements, rotation and moment along the center line, x 2 0= a12,
of a square moderately-thick (alh 0= 10) and moderately-deep (Ria 0= 10) antisymmetric cross-ply

(0°/90°) C4-type clamped spherical panel.

to the average value of upper and lower bounds for sufficiently large m, n, which is in accord
with the theory of Fourier series, as expounded by Hobson (11926). For example, the error
in MT, defined to be {average of lower (m = n = 97) and upper bound (m = n = 99)
average of lower (m = n = 51) and upper bound (m = n = 53)}/{average of lower
(m = n = 97) and upper bound (m = n = 99)}, is approximately 0.627%. The converged
normalized central deflection of a thin (a/h = 100) antisymmetric (0°/90°) cross-ply plate
obtained from the present solution, computed using R = 108 and material type II, reduces
to its flat laminate counterpart [see Chaudhuri and Kabir (1992)], and also compares
favorably (approximately 0.56% difference-see Table 1) with Whitney's (11970) CLT
based boundary-discontinuous solution and FSDT-based boundary continuous dis
placement solution due to Kabir and Chaudhuri (1991).

Table 2 presents a comparison of the central deflections, u1, rotations, cPT and central
moments, MT, of antisymmetric (0°/90°) cross-ply panels, with SSl, SS2, SS3, SS4 and C4
boundary conditions, prescribed at all four edges. The numerical results for the case ofSSI
and SS2 are evaluated using m = n = 78, while for the case of SS3, SS4 and C4, m = n = 99
is used. The present results for the C4 boundary condition are numerically indistinguishable
from their counterparts, obtained by Kabir and Chaudhuri (in review), using a generalized

Table 2. Comparison of computed normalized displace
ments, rotations and moments of square moderately-thick
(alh = 10) and moderately-deep (Ria 0= 10) antisymmetric
(0°/90°) cross-ply spherical panels for various boundary

conditions

Boundary
conditions u1 4>1 M1 m=n

SSI 18.83 5.410 64.14 78
SS2 10.10 1.539 77.52 78
SS3t 18.66 5.352 64.41 99
SS4 !OJ 1 1.540 77.53 99
C4 5.58 1.030 31.70 99

t Computed using Navier solution.
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Table 3. Comparison of computed nonnalized displace
ments, rotations and moments of square moderately-thick
(alh = 10) and moderately-deep (Ria = 10) symmetric
(0°190 0 10°) cross-ply spherical panels for various boundary

conditions

Boundary
conditions u! 4>f Mf m =n

SSI 10.53 2.006 122.55 78
SS2 9.17 1.750 106.78 78
SS3t 10.47 1.996 121.92 99
SS4 9.17 1.750 106.79 99
C4 4.73 0.322 35.89 99

t Computed using Navier solution.

Navier's approach, where the boundary conditions are satisfied a priori. This validates the
applicability of the present method in the case of the C4-type clamped boundary condition,
The numerical results for the SS3 boundary condition, computed using Navier's approach,
are very close to their sst counterparts. A similar agreement is also observed between the
results for the SS2 and SS4 boundary conditions. Computed ut for the SS2 and SS4
boundary conditions appear to be numerically closer to their C4 counterparts, as compared
to their SSt and SS3 counterparts. Similar agreements between SSI and SS3, and SS2 and
SS4 results are also observed for the case of symmetric (00 j90°JOO) laminates (Table 3).
However, computed ut results for the SS2 and SS4 boundary conditions are closer to their
SSI and SS3 counterparts than to their C4 counterpart.

In what follows, numerical results will be restricted to SS1-, SS2-type simply-supported
and C4-type clamped boundary conditions. SS3 and SS4 results are generally too close to
their SSI and SS2 counterparts to warrant separate meaningful plottings. Figures 3-5 and
6-8 present variations, with respect to ajh ratio, of ut, 4JT, and MT of moderately deep
(relatively shallow) (Rja = 10) antisymmetric (00 j900) and symmetric (00 j90°JOO) cross-ply
panels, respectively, with SSI, SS2 and C4 boundary conditions, prescribed at the edges.
Sensitivity of the response quantities of interest to thickness, lamination and boundary
constraint is self-evident in these plots. For example, displacements, rotations and moments,
for the case of the SS2 boundary condition, display more pronounced variations than their
SSI and C4 counterparts. Figures 4 and 7 show comparison of the FSDT-based central
deflections and moments, of antisymmetric and symmetric spherical panels, respectively,
subjected to the SS2 boundary condition, with their CLT-based counterparts [Chaudhuri
and Kabir (in review)] over a wide range of the ajh ratios. These plots exhibit the effect of
transverse shear deformation on the computed deflection, captured by the FSDT (and
neglected' by the CLT), especially in the thick shell regime, for both types of lamination.
Detailed discussions on this issue are available in Chaudhuri and Kabir (in review) and will
be omitted here in the interest of brevity of presentation. Furthermore, as expected [see
Chaudhuri and Seide (1987) and Seide and Chaudhuri (1987)], the thickness effect,
especially in the case of thicker panels (ajh ~ 20), is more pronounced in the computed
normalized transverse displacements than in the corresponding rotations and moments. It
is further noteworthy, that a more pronounced thickness effect is observed in the computed
displacement, edge rotation (which applies to the simply-supported boundary conditions
only) and central moment of symmetric (00 j90°JOO) panels, as compared to their anti
symmetric (00 j90 0

) counterparts. There is reason to believe [see Abu-Arja and Chaudhuri
(1989)] that the effect of thickness is compensated by the bending-stretching coupling effect,
a characteristic of antisymmetric and unsymmetric laminates.

Variations of ut, 4JT and MT, with respect to Rja ratio, of moderately thick (ajh = 10)
antisymmetric (00 j90 0

) and symmetric (00 j90°JOO) cross-ply panels, are presented in Figs
9(a, b), lO(a, b), 11 and 12(a, b), for the SSI, SS2 and C4 boundary conditions, respectively.
Sensitivity of the response quantities of interest to the curvature, lamination and boundary
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constraint is self-evident in these plots. For example, variations of transverse displacements,
rotations and moments of both antisymmetric (0°/90°) and symmetric (0°/90% °) cross-ply
panels, with SSt boundary condition, shown in Figs 9(a, b), respectively, are not that
prominent for R/a > 10. The same is not true, however, for the case of the 882 boundary
condition [Figs lO(a, b), II], where the membrane effect is quite pronounced, even for
relatively shallow panels (R/a > 10). For the case of antisymmetric (0°/90°) cross-ply panels,
the moment MT decreases monotonically with the increase of R/a ratio [Fig. lOa)], while
MT of symmetric (0°/90% °) laminates shows a completely different behavior [Fig. lOeb)].
Figures lO(a, b) and (11) also present comparisons of the present FSDT-based normalized
central deflection, u!, and moment, MT, respectively, of antisymmetric (0°/90°) and sym
metric (0°/90°/0°) cross-ply moderately thick (alh = 10) spherical panels, subjected to
the SS2 boundary condition, with their CLT-based counterparts. As expected, the CLT
underpredicts the deflection, while overpredicting the moment in the case of symmetric
laminates, over the entire range of R/a ratios. Detailed discussions on the subject are
available in Chaudhuri and Kabir (in review) and are, therefore, excluded here in the
interest of brevity of presentation. Numerical results for variations, with respect to the ratio
Ria, ofu! and (!>T ofboth antisymmetric (0°/90°) and symmetric (0"/900 /0°) cross-ply panels,
with the C4 boundary condition, presented in Figs 12(a, b), respectively, show similar
behavior, whereas the plot for Mt vs Ria ratio is different in the two cases. Mt, of anti
symmetric (0°/90°) cross-ply panels, increases with Ria ratio, while exhibiting a contrasting
behavior in the case of their symmetric (0°/90% °) counterparts. It is noteworthy that the
membrane action due to the effect of curvature has a complex interaction with the
bending-stretching type coupling effect, caused by the asymmetry of lamination. This
interaction is most pronounced in the case of prescribed simply-supported boundary con
ditions with constraint, Un = 0 [e.g. SS2 boundary condition, Figs lO(a, b), II], and least
prominent in the case of prescribed simply-supported boundary constraint, Nn = 0 [e.g.
SSI boundary condition, Figs 9(a, b)].

Variations of uT, u!, iP1 and Mt, of moderately thick (alh = 10) and moderately deep
(Ria = 10) antisymmetric (0°/90°) panels with S81, SS2 and C4 boundary conditions, along
the centerline, X2 = a/2, are shown in Figs 13-15, respectively. In all these plots, transverse
displacement, u!, assumes its maximum magnitude at the center of the panel, where the
surface-parallel displacement, ut and rotation, 4>t vanish. For the case of SSI boundary
condition (Fig. 13), u1 and 4>T attain their maxima at the appropriate edges (i.e. at Xl = 0
and a). The rotation, 4>1, for the case of SS2 and C4 boundary conditions, reaches its
maximum magnitudes near the one-quarter and three-quarter points (Figs 14 and 15). A
similar trend is also observed in the case of ut as shown in Figs 14 and 15, respectively, for
SS2 and C4 boundary conditions.

5. CONCLUSIONS

The key conclusions that emerge from the numerical results on cross-ply spherical
panels, presented in this paper, can be summarized as follows:

(i) The effect of the transverse shear deformation is compensated to a certain extent by
the bending-stretching coupling effect-a characteristic of unsymmetric laminates.

(ii) Antisymmetric cross-ply spherical panels, by virtue ofthe bending-stretching coupling
effect, are more sensitive to the boundary condition of surface-parallel displacement
normal to an edge, Un = 0, than the corresponding rotational condition, 4>n = O.
Numerical results clearly demonstrate that the SSt and SS3 results are virtually
indistinguishable and the same is true for the SS2 and SS4 conditions. More impor
tantly, the SS2/SS4 results for transverse displacement are numerically closer to the
corresponding clamped, C4, results than to their SSl/SS3 counterparts.

(iii) The deformation behavior of symmetric cross-ply spherical panels more closely
resembles homogeneous orthotropic ones (e.g. unidirectional composite shells), com
pared to their antisymmetric counterparts, because all four simply-supported bound
ary conditions yield relatively close results.

$AS 3O:2·J



286 R. A. CHAUDHURI and H. R. H. KABIR

(iv) The membrane action due to the effect of curvature has a complex interaction with
the bending-stretching type coupling effect, caused by the asymmetry of lamination.
This interaction is most pronounced in the case ofprescribed simply-supported bound
ary conditions with constraint, Un = 0 (e.g. SS2/SS4 boundary conditions), and least
prominent in the case of prescribed simply-supported boundary constraint, Nn = 0
(e.g. SSI/SS3 boundary conditions).

The numerical results presented herein extend our understanding of the complex
deformation behavior of finite-dimensional moderately-thick cross-ply doubly-curved
panels, and should serve as baseline solutions for future comparisons with such approximate
numerical techniques as finite element and finite difference, in the context of FSDT.
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APPENDIX

Certain displacement functions and their derivatives, at the boundaries, may be expressed in terms of the
boundary-discontinuous Fourier coefficients. For example:

b oc

u,(x"O) = -4 L (am+bm)COS(iXmX,),
m=O

b oc

u,(x"b) = 4 L (am-bm)COS(iXmX2)'
m-O

(Ala)

(Alb)

U",(0,X2)' uu(a,x2); U2(0,X2), U2(a,X2); U2.2(X2, 0), U2,2(Xhb); tP,.,(0,X2)' tPl.l~a,x2) and tP2,2(Xh O), tP2.2(X2,b)
can similarly be defined in terms of Cn, dn ; en, f.; gm' hm ; in, j. and km, 1m, respecttvely.


